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Abstract

Many distributed memory machines support connection-based communication instead of or in addition to
connection-less message passing. Connection-based communication can be more efficient than message
passing because the resources are reserved once for the connection and multiple messages can be sent over
the connection. While long-lived connections enable more efficient use of the communication system in
some situations, managing connection resources adds another level of complexity to programming such
machines. iWarp is an example of a distributed memory machine that supports long-lived connections.
To aid the iWarp programmer and program generator tools, we developed a tool chain that enables the
programmer to define connections and compose parallel programs. The communication tool chain has been
in use for four years in various forms. In that time, we have found many benefits and a few pitfalls in our
model. This paper describes the design of the programming model and tools and discusses our experiences
with this implementation.
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1 Introduction

For many distributed memory systems, connection-based communication is another option to connection-
less message passing communication. With traditional message passing systems, communication resources
(buffers, memory, network bandwidth, etc.) are reserved for each message and released after the message
has completed. This reservation time is reflected in the start up overhead for each message, so long messages
are needed to amortize this cost.

With connection-based communication, the communication resources are reserved once when the con-
nection is opened. Since the connection is long-lived, multiple messages can be sent over the connection,
so the cost of resource reservation is amortized over more data. For regular, frequently used communication
patterns, long-lived connections improve communication performance. However, working with long-lived
connections adds complexity to programming the parallel system, because the programmer must be aware of
the communication patterns. By contrast, message passing systems do not require as much communication
configuration information from the programmer.

iWarp is one distributed memory system that supports long-lived connections with hardware. The
Intel Paragon, Inmos transputer systems, and ATM networks are other examples of systems that sup-
port connection-based communication with varying degrees of hardware and software. These long-lived
connections are called logical channels, virtual channels, or virtual connections on various architectures.

To aid programmers and program generators with the task of managing long-lived connections for
iWarp, we developed the Programmed Communication Service (PCS) tool chain. The PCS tool chain
provides several abstractions to aid programming in a connection-based model. PCS provides the user with
the network abstraction that describes connections at a level higher than the hardware implementation. The
tool chain takes care of the hardware level resource allocation given the user network definitions. PCS
supports array modules to encapsulate the node programs and network definitions that make up a parallel
program. This encapsulation allows array modules to be reused and composed into a larger array modules.
PCS also uses the concept of phases of a computation. The programmer can associate network definitions
with different program phases. At run time only one phase is active at a time, so the resources for inactive
networks can be shared with the active networks. This allows more networks to be defined with a limited
set of communication resources.

We have been using versions of the PCS tool chain since 1990. In this paper, we describe the tool
chain features to date and discuss the benefits and short comings of our current implementation. Section 2
describes the connection model used by PCS. The major PCS abstractions are described in Section 3. In
Section 4, we discuss the benefits and limitations of the programming model and the current implementation.
Section 5 describes other communication systems and how they relate to PCS. In Section 6, we present our
conclusions.

2 Connection model

In many cases, a parallel program uses well understood, static communication patterns (eg. grids, rings, or
hypercubes). In such cases, it is beneficiil to set up the connections once and use them many times. Using
long-lived connections yields two benefits over dynamic connections. First, reusing connections reduces
the start up overhead of communication, because the route does not need to be renegotiated with each
message between the same pair of nodes. Second, long-lived connections ensure the order of messages sent
over a connection, so these messages do not need to be buffered in memory but instead can be read directly
from the communication agent[HG921. This direct data consumption is necessary to effectively implement
systolic algorithms.

PCS is designed to work with distributed memory machines that support long-lived connections. The



tool chain assumes the target machine supports direct connections between nodes that are not necessarily
adjacent. Data sent over a direct connection require no software intervention on the intermediate nodes
once the connection has been initialized.

The PCS model assigns connection resources at compile time, so the programmer must write an
array program that defines the required communication connections. By the time the run time programs are
loaded, the connection resources have been pre-computed, so opening connections and negotiating resources
requires minimal execution time. Safely opening long-lived connections at run time without pre-computed
information can be a tricky operation.

Connection implementation differs between different systems. The current PCS implementation was
developed for iWarp[B+88, B'901, so for an example of connection configuration issues, we describe iWarp's
connection hardware support. iWarp supports connections with a limited number of communication queues.
Data from different queues are multiplexed over the physical bus on a word by word basis. For two nodes
to communicate, they build a connection by configuring queues on adjacent nodes to forward data to each
other. The connection requires one queue on each communicating node and each intermediate node. When
initializing the connection, communicating nodes must know which queues are used on their neighboring
nodes to correctly initialize the flow control hardware.

Figure I shows connections in a system where each node has two queues. No more connections can
involve node (1,1), since all of its queues are already in use. If a new long-lived connection is opened
at run time, the source node must ensure that there are sufficient queues along the projected route. For
example, if nodes (0,1) and (1,2) both attempt to open a connection to node (0,2) as shown by the dashed
lines in Figure 1, only one connection will succeed since only one queue remains free on node (0.2). To
ensure resource availability at run time, the node must communicate via a deadlock free channel, which is
potentially error prone and/or expensive. The short-lived connections used in message passing avoid this
problem by using deadlock avoidance techniques described in [DS871.

0,0 0,1 0,2 0,3

/,0 1,1 1,2 1,3

Figure 1: Example of connections and communication queue usage. The solid lines show connec-
tions. The dashed lines show attempted connections.

PCS assumes a fairly low level MIMD programming model. Each node can potentially run a unique
program, though for the sake of compilation simplicity most parallel programs consist of a few node
programs run on many nodes. By not strongly enforcing a programming model, PCS can be used to define
communication structure for a number of different programming models.

Mapping run time programs to nodes is also defined in the array program. For run time communication
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From array program

inport = create-port(node(O,O), "in");
outport create-port(node(O,l), "out");
nw = createnetwork(outport, inport);

From node program

pcs-init (); arrayprograml

if (self == node(O.O))
port = getport(*out");
send msg(port, data) out In

if (self == node(O,1))
port = get.port("in");
recv_msg (port, data);

(a) (b)

Figure 2: Part (a) shows code that defines a network at compile time and run time code that uses
the network. Part (b) shows a picture of the connections defined for the resulting tWo node parallel
program.

efficiency, the PCS model assumes that at most one process is loaded on each node. Multi-threaded node
programs can be supported in this model, but without gang scheduling, fully multiprogrammed nodes require
additional safety mechanisms.

The topology of the target machine is not intrinsic to the communication model. iWarp is connected in
a two dimensional torus, which is a two dimensional grid with wrap around edges called back cdies. For
concreteness, the remainder of this paper assumes that the target machine is connected in a torus topology.

3 PCS abstractions

The PCS tool set supports connections and program constructions defined at compile time. This compile
time construction avoids the problems of run time communication resource allocation. Here we describe
the major abstractions supported in the PCS tool chain.

3.1 Network compilation

With the PCS tool chain, the programmer or program generator creates an array program in addition to the
node programs that are executed on the nodes at run time. This array program defines connections between
nodes and defines node program to node mappings. Figure 2 shows segments from an array program and
node program and the corresponding run time communication structure.

At run time nodes communicate over connections called networks. To define a connection between two
nodes, the array program defines ports on the input and output nodes and defines a network between the
two ports. At run time, the node program retrieves the ports on its node and uses these ports to access the
network. Therefore, port names are local to the node. If the node programs used the network name directly
to access connections, the nodes would have to agree on a global network naming scheme. The example in
Figure 2 defines one network. At run time node (0,0) accesses this network with the "out" port, and node
(0,1 ) accesses this network with the "in" port.
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The system supports several alternatives for placing node programs on nodes and routing networks. The
programmer can explicitly place all node programs and explicitly route all networks. The programmer can
also place all node programs but not specify routes for some of the networks. The current implementation
does simple row then column routing for unspecified routes. The programmer can also leave both node
placement and network routing unspecificed. In this case, the system uses an automatic placement and
routing algorithm defined in [MKS89J. This search algorithm tries to optimize the use of the limited number
of communication hardware resources. The framework could easily be altered to use other placement and
routing algorithms, e.g. simulated annealing or other circuit routing techniques.

Figure 3 shows a flow chart of the tool chain. The PCS tools add two steps to the traditional compile
and execute cycle of a uniprocessor: array module combining and array module loading. The array
combiner compiles and executes the array program to create an array module. The combiner calculates
which communication resources should be used for each network and writes this information in the network
definition file, in effect compiling the networks. The resulting array module contains the network definition
file and the node programs, encapsulating all information needed to execute the parallel program.

user cell sources arrayprogram

single cell compiler

cell object files module combiner

System libranes array module loader
Ji

run time system

Figure 3: Flow chart of the PCS tool chain.

The array module loader loads an array module onto a specified physical system. It calculates a mapping
from the logical grid and logical connections to the physical system. Physical nodes are addressed by their
row and column location in the physical grid. Similarly nodes in array module are addressed by their row
and column location in the logical array module. The array module loader calculates the mapping from the
logical node ID's to the physical node ID's. Figure 4 shows a case where a 2 x 4 array module is loaded onto
a 4 x 4 node array. The user can specify which processor should correspond upper left node in the array
module. The logical to physical mapping in Figure 4 is map(lr, Ic) - (Ir + i. 1c). This array module has a
connection that uses the back-edge from logical node (0,0) to (1,0). In this -- apping, this connection must
be routed through two extra physical nodes, since physical nodes ( 1,0) and (2,0) are not adjacent across the
back edge.

After the logical to physical resource mapping is calculated, the array module loader loads the node
programs and the necessary network initialization information on each node. After a global synchronization,
the nodes read in the compiled network data to initialize the user defined connections.

Once the networks have been initialized, the programmer can access the networks with any library,
assembler function, or system call, because the run time data movement functions are orthogonal to the
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Figure 4: The 2x4 array module mapped onto a 4x4 physical array. The back edges of the array
module are mapped through several physical nodes.

definition of the networks. The port structure contains detailed information about the resources used for
the corresponding network. This information can be used to access the network at run time. For example
on iWarp, the port structure can be used to directly access the register-mapped communication interface
(e.g. send-word(gate, port->queue, data)). The port can also be used in a higher level data
movement routine much as sockets or file pointers are used (e.g. sendimsg (port, data-block)).

3.2 Module composition

The array module encapsulates all the details of a parallel program. The next obvious step is to compose
smaller array modules into bigger modules, i.e. use array modules as building blocks. By composing array
modules, the programmer can create a pipeline of several different programs or reuse the same subprogram
in several different contexts.

PCS supports two styles of combining array modules: merging and nesting. These models differ in
how they handle a node's ID. At run time, the node program uses a node ID to determine which program
branches to take, which data to access, etc.. In the merge model, the included node program assumes the
node ID of the logical node it is mapped to. This model is useful for loading utilities or networks, where the
node ID is unimportant or should adapt. The array module in Figure 5(a) shows array module B included
using the merge model. Node (0,0) in array module B assumes the node ID of the new array module, (2,2).
By contrast, the nesting model preserves the node's original ID. This model is necessary to hierarchically
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. array array

modula, 0ZH module B

(a) (b)

Figure 5: Array module B is included following the merge model in part (a). In part (b), array
module B is included following the nesting model.

compose array modules. The array module in Figure 5(b) shows array module B included using the nesting
model. In this case node (0,0) from array module B maintains its original grid ID. If the program on that
node sends a message to the right, it would still send to node (0,1) not node (2,3).

Computer Aided Design (CAD) tools provide motivation for the nesting model. When designing a
processor in a CAD tool, the user may first design a register unit with well-defined inputs and outputs.
Then later in the design, the user can include an instance of the register unit. The main design does not
know the details of the register unit design. but by properly using input and outputs, the main design can
treat the register unit as a black box. Similarly, a person creating a parallel program may first create a Fast
Fourier Transform (FF1') module with well-defined inputs and outputs. Then later the programmer can use
an instance of the FF1' module as a black box by properly feeding the inputs and using the outputs.

In PCS all array modules are created out of building blocks, instances of lower level array modules.
The lowest level module is a node. Each node instance has a default instance ID, which is the same as its
grid ID. By combining a set of nodes, a higher level array module is created. In turn instances of this array
moduie can be composed to create a still higher level array module. The example in Figure 6 shows two
instances of the simple array module described in Figure 2 composed by the nesting model into a larger
array module. This example shows three levels of modules: the nodes, two instances of the array module
array-programl, and one instance of the nested-array array module.

Since the composition follows the nesting model, the node program on the lower left node still assumes
that its ID is (0,0), so it executes the send-msg statement in the node program. Similarly, the lower
right node assumes it is still node (0,1), so it executes the recv.msg statement. If this array module was
composed with the merging model, only the nodes on the top row of the array module would execute the
guarded node program statements. The nesting model automatically keeps track of translating the logical
node IDs to reflect their original ID. Without nesting composition, the node programmer would have to
rewrite node programs to not rely on their node IDs or to reflect their new locations. With the nesting model,
the programmer can create array modules without concern for their final location.

To complete the hierarchical composition, the nesting model must support communication between array
modules. Figure 7 shows an example of a nested array module for a two dimensional FF1" computation
that also uses inter-module connections. Code segments from the I D-FFT and 2D-FFT array programs are
shown in Figure 8.

6
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rasted-affey

array-programl

out in

Figure 6: Nested composition of two instances the simple array module from Figure 2.

Module instances communicate through inputs and outputs defined as ports. As described in Section 3. 1.
nodes can access local ports, which are the only type of ports available at run time. Higher level array
modules can access external ports, which are mapped to ports in the next lowest level. In Figure 7 external
port "2D.in" is mapped to external port "FFT.in", which is mapped to local port "'in". The code in Figure 8
shows this mapping with the call to map-external -port that makes these ports externally visible. Only
the ports associated with the highest level of the array module instance are accessible in the array program.
The external ports can be connected by networks as the "FFT.out" port in row-fft and the "FFT.in" port
in col-fit are connected in Figure 7. The external port abstraction exports ports to higher levels, enabling
nodes to be connected to other nodes outside their local array module without requiring the lowest level
array program to consider all possible external connections.

2D-M

2d•. nI F, D
I row-o 

4 
I 2doout

Figure 7: Array module composition of 2D-FFT array module from two I D-FFT array modules.
The dotted lines show mappings between local and external ports.

"The node program for the I D-FFT module is shown in the bottom of Figure 8. All nodes in the 2D-FFT
module execute this code. The I D-FFT module reads input from its input port, performs a series of I D-FFTs,
and writes the transposed data to the output port. In this example, the same I D-FFT module is used for the
row FFT and the column FFT. If a local port is not bound in the array program, it will be a NULL port at
run time. In this example, by checking the value of the port, the node program decides between reading
from the connection and reading from file 1/0.
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From array program for I D-FFT

node.row = node.col = 0;
port = create-port(&node, "in");
map-external-port(port, "FFT.in");
node.row = row_num-l; node.col = col-num-l;
create-port(&node, *out*);
map-external-port(port, *FFT.out');

From array program for 2D-FFT

node.row = node.col = 0;
rowinst = create_instance(&node, "row-fft", "fft")
in-port = getexternal_-port ("FFT. in", rowinst);
map-external-port(in-port, "2d.in');

node.col = 2;

colinst = create-instance(&node, "col-fft', "fft')
outport = get-externalport ("FFT. out". colinst)
map-externalport(out-port, *2d.out");

outport = get-externalport ("FFT. out". rowinsti;
in-port = get-external-port("FFT.in*, colinst);
create-network(outport. in-Jport, NULL);

From node program

if (self == node(0,0))
in = get-port(*in");
if (in != NULL)

recvmrsg(in, data, 3izeof(data));
else read(0o data. sizeof(datafl;

distribute_data(data, self);

for (i = 0; i < niP; i+÷)
fft(data(i], n);

transpose(data, dataout);
merge-data(dataout, self)
if (self == node(l,l)) {

out = getport("out");
if (out != NULL)

sendmsg(out, dataout, sizeof(dataout));
else write(l, dataout, sizeof(dataout));

Figure 8: Excerpts from array program that defines the I D-FFT and 2D-FFT array modules, and
excerpts of the run time node program executes on all nodes.

3.3 Communication resource sharing

On iWarp at most 20 communication queues are available on each node. This limits the number of
connections that can be defined at a given point in time. One important observation is that programs go
through different phases of communication patterns. When a particular communication pattern is not in
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Figure 9: Program that alternates between two communication phases.

use, its resources can be used for other patterns. Thus, the communication resources can be time "hared.
This network phase switching is analogous to reusing registers via a context switch on a multiprogrammed
uniprocessor. For example. Figure 9 shows a program that alternates between a phase that communicates
using a hypercube pattern and a phase that communicates over a grid pattern.

Switching between communication patterns is conceptually simpler than general dynamic connection
creation, because all nodes make the phase switch at a common point in the program. At compile time. the
networks are defined as usual. In addition, the networks are assigned a phase ID with the add- c _naS e,
function. To switch between phases at run time, the node retrieves a pointer to the phase and calls the
set-phase ( ) function. The set:-phase ( ) function must first synchronize the system before the new
communication pattern information can be loaded to ensure the network configuration is consistent across
the system. In fact the synchronization is the bulk of the phase switch time in our current implementatlon.
Figure 10 shows code segments that define and use the phases shown in Figure 9.

From array program From node program

phasel = create-phase("hyper"); set-phase(get-phase ("hyper"));
nw = create-hypernet(; /* Hypercube-based calculation
add.tophase(nw, phasel) ;

set-phase(get-phase("grid"n):
phase2 = createephase("grid"); /* Grid-based calculation
nw = create-gridnet();
add.tophase(nw, phase2);

Figure 10: Array program and node program segments that switch between hypercube and grid
topologies.

Even for systems where hardware resource pressure is not so severe, phases can serve as a useful
abstraction. For example on some systems, it may be a good idea to allocate more bandwidth or buffer
space to the networks in the currently active phase.

9



3.4 Viewing array modules

In addition to the other compilation tools, there is an array module display program. This program uses
information from the array module to create a picture of the defined networks, submodules, phases, and
program mappings. Figure II shows the display of a module that defines networks for a transpose that
utilizes the machine's full bisection bandwidth. Additional information is displayed at the top of the screen
about the object indicated by the mouse. By choosing entries from the phase menu, networks from different
phases are displayed.

Originally, we had planned to extend the module display program to enable graphical editing of the
array module. At the time, we decided such a tool would only be useful for occasional or novice PCS
programmers, who where not our target audience. In hindsight, editing would be quite handy for making
small changes to array modules created by other users or other program generators.

P. V. - .y - 3.7),' "1 n.o"

r/ ,

OA:1 3A 3 7)

(4.0) 4k§ 4,A, 4 7)

Figure 11: Display from the array module display program.

4 PCS experience

Development of PCS began in 1990 when the first iWarp systems arrived at Carnegie Mellon. C and
PCS have been used to implement several parallel program generators developed at Carnegie Mellon
including Adapt [Web92], Assign [O'H91 1, and Fx [SSOG93]. C and PCS are also directly used by system
programmers for explicitly programming communication. . Starting in 1992, Intel included the PCS tool
chain in its iWarp software distribution[Int92]. The Carnegie Mellon version of PCS has continued to
evolve as we gain additional experience with iWarp(Hin931.
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The network abstraction for long-lived connections has been very useful. For regular communication
patterns, it is natural for the node program to be aware of the topology of the program. For instance, many
hypercube algorithms make explicit use of the hypercube topology. These algorithms can be implemented
with message passing, but the greater efficiency provided by long-lived connections does not add any
conceptual complexity.

Compiling networks has been very effective. Creating long-lived connections at run time is quite
error-prone, because it is easy for the programmer to encounter race or deadlock conditions while setting up
arbitrary connections at run time. By compiling the networks, we were able to create programs that made
sophisticated use of the communication system far sooner than we could have otherwise.

In general this implementation of the PCS tool chain has been very useful. As with any first generation
system, we found limitations in the system after using it seriously. These limitations can be divided into
three sets: conceptually simple implementation issues, poor interactions between the programming model
and the physical system, and fundamental limitations in the programming model.

4.1 Simple implementation limitations

For any reasonably interesting set of networks, the network resource assignments will be different for most
nodes. Originally, a separate network resource assignment table was compiled and linked for each node.
The first implementation created up to N different network initialization files for each node on a N node
system. Even for our initial 12 node system, this growth in compilation time was infeasible. The next
implementation linked the network initialization information for all nodes with each node program. With
only one initialization file, the compilation time was reduced, but the space requirements were infeasible for
larger physical systems and complex array modules. The initialization phase of our current implementation
explicitly loads and distributes the network information, so one network initialization file is created but only
a portion of it is loaded on each node. This solution could also be performed by a sufficiently sophisticated
program loader.

Name scoping was not sufficiently thought through. In the current implementation. the node program
uses the port name to retrieve a reference to a port. If two ports both named "out" are defined in different
network phases on the same node, the node program cannot unambiguously retrieve that port. The port
name space requires more structure to avoid this ambiguity.

The current implementation only allows statically sized array modules. The size of the array mo lule is
defined at compile time. This static size is a bit constraining, but it enables greater run time efficienc,.. For
run time flexibility, the array modules should be able to expand to use all available processors. A compi ,tely
general virtual processor model would probably not be efficient enough, but a partially parameterized model
may provide a reasonable trade-off between flexibility and efficiency.

4.2 Interaction limitations

An iWarp system (and most parallel systems) can have distinguished nodes. These nodes are different
from the standard computing nodes because they have access to extra resources such as I/O boards or extra
memory. The basic PCS model assumes that all nodes are created equal, so the introduction of distinguished
nodes causes some conflicts between the programming model and the physical system.

On iWarp most distinguished nodes are not directly part of the torus mesh but instead are attached to the
border of the torus via the torus back edges. Figure 12 shows a border node connected between nodes ( 1,0)
and (1,3). For programs that do not use the border node, its presence means an extra link will be included
in networks between (1,0) and (1,3).

A particular type of border node is not guaranteed to be in the same location on all machines. Originally,
PCS tried to hide the real location of border nodes from the programmer, by forcing the programmer to
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Figure 12: 4 x 4 physical array with a border node between nodes (1,0) and (1,3).

name the border nodes by ID's other than the location based grid ID and not allowing manual routing of
networks that included border nodes. However, the direct routing control is vital in cases that try to optimize
resource usage, so the current implementation no longer hides the location of border nodes. Instead it allows
programmers who are willing to trade portability for performance to directly route to and from the border
nodes.

Distinguished nodes also revealed limitations in the current implementation of automatic placement
and routing. The current implementation is an all or nothing scheme. Either all nodes are automatically
placed, or all nodes are manually placed by the programmer. In many cases, a programmer is concerned
about placing one node program on a distinguished node but does not care exactly where the other node
programs are placed. In this case, the system should allow the programmer to partially map the node
programs to nodes. Then the system can take care of the remaining mapping and routing automatically.
Pinning down the location of some node programs should be a simple extension to our current automatic
placement algorithm.

Space sharing the machine through composing array modules destroys the torus model of the machine.
If an array module is run alone, it can use all the network bandwidth. Similarly, if an array module has
networks that are only routed across the face of the logical torus, it can use all the network bandwidth
whether it is run by itself or it is composed with other array modules, but if an array module has networks
routed across the back edges of the torus (as the example in Figure 4), those back edges may be routed
through other array modules if the array module is composed.

Many applications require PCS communication to co-exist with other communication packages such
as message passing and synchronization libraries that expect to directly control communication resources.
Early implementations exposed the underlying resource reservation directly to the programmer. Programs
that expected to use other packages had to explicitly reserve those resources in the array program. This
forced the PCS programmer to understand which sets of resources all programs required. For example, the
message passing library may require queues 0 to 3 and the synchronization library may require queues 7
to 10. This approach was unacceptable, because array programs were made incorrect by changes to other
packages.

12



The current PCS implementation lets the programmer specify how many communication resources are
required in the array program. This defaults to all available resources if nothing is specified. This requires
less information from the programmer than keeping track of which resources are not available. Ideally,
there should be a small run time routine that distributes communication resources and checks for obvious
conflicts. Unfortunately, the current iWarp run time system does not have such a routine. Instead there are
agreements between PCS and other packages about the order of resource allocation.

4.3 Model limitations

Array modules are static in the sense that they exist for the duration of the program. In some cases, it would
be useful to run a series of array modules. For instance, the current implementation of tasking in the Fx
parallel compiler uses array modules to represent tasks[SSOG93]. However, to support a general tasking
scheme, array modules must be more dynamic. For instance, consider the task graph shown in Figure 13.
To execute tasks 2 and 3 concurrently, the array is split into two groups. To executes tasks 5, 6, and 7. the
array is split into three groups. Tasks I through 4 can be represented with one hierarchical array module,
and tasks 4 through 8 can be represented with another array module, but these two array modules have
different submodule divisions. The current PCS implementation can easily support tasks I through 4 or
tasks 4 through 8, but the lack of time varying array modules makes it difficult to support tasks I through 8
directly. To support more general task graphs, the program must be able to run a series of array modules.

Time changing array modules can be supported by expanding the phase switching ideas described in
Section 3.3. Instead of just switching between different sets of networks, the system also changes the
currently executing array module structure. This structure includes the set of valid networks and ports, the
ID of each node, and the size of each array module. To implement these time-dynamic modules, we need to
define the overlay composition model in addition to the merging and nesting models defined in Section 3.2.
The overlay model does not combine networks and divisions of the included array modules as the merging
and nesting models do. The overlay model includes array modules to be instantiated at run time much as a
library functions are linked into a single node program to be invoked at run time.

Figure 14 shows code segments to support this module switching. Module "modl'" is a hierarchical
module that supports tasks 2 and 3. Module "mod2" is a hierarchical module that supports tasks 5. 6.
and 7. The array program overlays these array modules, so they can be invoked at run time. The node
program "main" is loaded on all the nodes. "main" implements the single unit tasks 1, 4, and 8. "main"
is also responsible for moving data to the expected locations for modules "mod I" and "mod2" and calling
functions in those array modules. set.module instantiates the networks like set-phase. In addition. it
adjusts the node's ID and active array module information. After switching to an array module, functions
defined in that array module will execute just as if the array module had been executed directly.

"5 Related communication tools

The PCS tool chain is similar in spirit to many parallel coordination languages. Coordination languages
are libraries or language additions that define communication structures and coordinate parallelism. The
coordination language is generally orthogonal to the base computation language and can be incorporated with
several different languages. Most implementations of these coordination languages embed the definition
of the communication structure in the run time node program. Thus, without sophisticated compile
time analysis, the communication structures must be defined at run time contributing to the run time
communication overhead.

PVM[Sun90], Express[FKB91 1, and Linda[CG891 are three widely used coordination languages. They
have been ported to a wide variety of architectures and are quite general. This generality means that the

13



Task 1ID

Taek2 Task3 Md

D~Di MOd2
~T. k, 8]

L_J 5

Figure 13: A program task graph and corresponding array modules.

systems must buffer messages and hide many of the features of the target system. While PVM and Express
support the idea of creating "connections" between processing elements, the required buffering eliminates
the possibility of supporting low latency communication using these tools. The communication structures
are embedded in the node program, so are not executed until run time.

Fortran M [FC93] and Parallaxis [Bra921 are two examples of programming models that augment the
base language to support communication pattern definitions. They can also be thought of as coordination
languages except the communication definitions are language extensions not orthogonal additions. Fortran
M augments Fortran 77 with support for connections and modules to support task parallelism. Similarly, Par-
allaxis augments Modula-2 with support for SIMD parallelism and user specified communication patterns.
In both cases, the communication structures are defined in the run time program.

Transputer systems also incorporate the connection abstraction into their programming model via
channels. Without additional routing switches the T800 systems do not support direct connections between
nodes that are not physically adjacent. Channels can only connect adjacent processors, which simplifies
allocating network resources.

The CNET programming environment[ABT92] has been developed for the SuperNode architecture, a
system of T800 processors and routing chips that enable reconfigurable connections between processors.
The C.NET environment employs abstractions for long-lived connection and communication phases. In this
enviror-nent, the user is responsible for writing three sets of programs: software components for processes
similar to PCS node programs; phase programs that define a mapping between software components and
processors and interprocessor connections, similar to ohe PCS array program; and topology definition
programs that define how the routing switch is configured. The communication state is defined at compile
time. The C-NET environment does not utilize the array module abstraction and does not allow array
module composition.

MARC[BIK91 ] is another tool developed for a network of T800's. MARC is more directed towards au-
tomatically mapping and routing a set of communicating sequential processes than supporting a programmer
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From array program

compose..module("modl", "tsetl");
* compose_module("mod2', "tset2");

for (node.row = 0; node.row < num rows; node.row++)
for (node.col = 0; node.col < numn_cols; node.col++)

place(&node, "main.o");

From node program

/* Arrange data for task set 1 'I
module.switch( "tsetl");
curinst = getinstance(;
if (curinst == task2)

task2 ();

else if (cur-inst == task3)
task3 ();

/* Arrange data for task set 2 */
module-switch ( "tset2" );
cur_inst = get-instance(;
if (curinst == task5)

task5 ();
else if (cur.inst == task6)

task6 ();
else if (cur-inst == task7)

task7 ();

Figure 14: Code to support time-dynamic array modules. By using the overlay model, this code
implements the example in Figure 13.

using the communication system directly.
Newer transputer systems should provide greater opportunity for using long-lived connections[MTW931.

The T9000 processor provides virtual channel support, so multiple virtual channels can be mapping to the
same physical channel. Therefore, multiple long-lived virtual channels can coexist. The C104 routing chip
supports connections between processors that are not necessarily physically adjacent.

[SQH92] describes a tool to create connections between Data Parallel C modules. This is similar to the
PCS support for external ports and hierarchically nesting array modules. However, this work only looks at
one level of nesting.

6 Conclusions

Over the last four years, we have created and used PCS for programming iWarp. PCS enables programmers
to access the communication hardware efficiently, and the network and array module abstractions enabled
programmers to create interesting communication patterns quickly. PCS is not the ultimate parallel pro-
gramming language, but it has been very useful for supporting higher level parallel program generators and
system level programmers.

Like other parallel coordination languages, PCS separates communication support from computation
support, and PCS is not intrinsically tied to any base computation language. Most use of PCS has been with
C, but the Fx program generator uses Fortran node programs with PCS for communication definition.
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Unlike other parallel coordination languages, PCS separates communication set up from communication
execution. With this separation, PCS tools are able to allocate resources and define maps for the parallel
program off line. This static communication set up is not added to the run time communication overhead
and avoids many potential network creation error conditions. Since communication set up and execution
are separated, using PCS for set up does not bind the user to any particular run time data movement package.

The communication abstractions are not specific to the iWarp hardware but are applicable to any system
that supports a connection-based communication model either directly in hardware like the Transputer
systems or through software on top of a different model like the Paragon. Networks and ports remove
the programmer from the details of connection configuration and resource allocation on the target system.
The array modules and communication phases provide program structure, enabling array module reuse and
modular programming.

Finally, our implementation experiences and design evolution should be interesting to others working
with a connection-based communication model. The details of our experiences will not be the same, but
other developers will encounter many similar interaction and model issues.
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